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The development and testing of new sensor
capabilities to address the increasing
demands for rapid assessment of rocket
engine health has led to the use of plume
emission spectroscopy and advanced data
analysis techniques. Several years ago, the
Space Shuttle Main Engine (SSME) became
the subject of a project at MSFC to look at
techniques for detecting anomalies in the
operation of rocket engines through
observation of the exhaust plume. Since
then, plume emission spectroscopy has
recorded many nominal tests, and the
qualitative spectral features of the SSME
plume are now well-established, leading to
definition of the optical plume anomaly
detection (OPAD) system.

The operational health of an engine is
examined through the acquisition of
spectrally resolved plume emissions and the
subsequent identification of abnormal
emission levels in the plume indicative of
engine degradation or component failure.
Since the amount of energy emitted from
the plume due to radiation of a given
species becomes a highly nonlinear function
with increased specie concentration
>> hardware erosion, development of a
process necessary to define these abnormal
emission levels presents numerous
challenges. The optical plume anomaly
detection-engine diagnostic filtering system
(OPAD–EDIFIS) is the defined process to
accomplish the tasks. OPAD–EDIFIS will
make analysis fast, reliable, and readily
adaptable to other rocket engines.

OPAD–EDIFIS is a comprehensive/
complex platform of various modules
representing the combined efforts of MSFC,
Ames Research Center (ARC), the Air
Force’s Arnold Engineering Development

Center (AEDC) at Tullahoma, Tennessee,
University of Alabama at both Tuscaloosa
and Huntsville, Dr. Wray Buntine, an ARC
subcontractor, and T. L. Wallace, a graduate
student. In its present form, it embodies
gigabytes of code/data with various
graphical display capabilities. The “real-
time” version(s), currently under develop-
ment, will exist as a stand-alone subset of
the EDIFIS.

Basically, the analytical modules consist of:
• Preprocessing codes;
• Spectral codes;
• Neural networks; and
• An optimization/fitting routine.

A typical spectrum generated has three
components: A dominant component due to
both equilibrium and chemilumenescent
emission of the OH molecule generated by
the hydrogen burning SSME; a background
continuum component due to an unbound
state of H2O and the unavoidable measure-
ment of scattered background light; and
possibly a metallic component indicating
metal erosion. Several metals of interest
radiate in the OH region. Unfortunately, the
complex interaction of the OH and water
vapor emissions are poorly understood and
little quantitative data are available that
would permit development of an accurate
model. Ames Research Center and Dr.
Wray Buntine have developed statistical/
filtering preprocessing techniques to
address this problem, isolating the metallic
components of the spectrum. Figure 96
isolates three metals of interest in test 901–
853, engine 0523 failure of HPFTP/AT Unit
6–4 at Stennis Space Center in January,
1996. Elements Cr, Co and Ni are plotted
for the test duration. (Saturated lines at
shutdown are omitted.)

A line-by-line (LBL) atomic spectral model
developed by T.L. Wallace predicts the
spectrum for a given metallic species, using
inputs such as number density, broadening
parameter, temperature and pressure.
Recently, the focus of efforts related to this
module shifted towards validation of the
integrated spectral analysis system and
spectral model. In particular, work has been

undertaken to validate the radiative
transport, self absorption and collisional
line-broadening mechanisms, and chemical
depletion rates to produce error propaga-
tions and uncertainties. Code validation is
an essential part of spectral analysis, and is
required in order to accurately determine
species densities from spectral measure-
ments. In late 1995, the SSME was
deliberately seeded with known concentra-
tions of two elements at MSFC’s Technol-
ogy Test-Bed (TTB). (Unfortunately, the
TTB was closed before additional seeding
tests could be conducted.) Spectral data
collected by the OPAD system provided
confirmation and essential validation data
for the spectral model and data processing
methodologies. The success of this
validation process was evident in MSFC’s
contribution to the failure investigation of
engine 0523 undergoing tests at SSC.
While details of this effort will be reported
in upcoming technical conferences, the
study to determine mass loss estimates for
this failure can be briefly summarized as
follows:
• The study made certain assumptions of

100 percent RPL, 100-cm observation
path length, uniform distribution of
eroding material, and steady-state
erosion during each 0.5-sec integration
interval;

• The study, due to time constraints,
addressed only certain periods of a
specified set of erosion events; not all
erosion activity was present in the entire
test;

• The study quantified two of approxi-
mately nine elements identified in the
erosion events. SSME seeding data is
presently limited to chromium (Cr) and
nickel (Ni). Coincidentally, Cr and Ni
are primary constituents of the alloys
reported lost; and

• Pratt & Whitney measurements of mass
loss during post-test hardware tear down
and inspection totaled approximately
94.45 grams. The MSFC EDIFIS process
predicted 37 grams.

While error and uncertainty analyses are
underway, the predicted spectral results are
almost indistinguishable from the actual



Technology Programs

1.0×10–5

8.0×10–5

6.0×10–5

4.0×10–5

2.0×10–5

2.0×10–5

1.5×10–5

1.0×10–5

5.0×1–7

0

0

Chromium

Cobalt

100 200 300 400 500

100 200 300 400 500
4.0×10–6

3.0×10–6

2.0×10–6

1.0×10–6

0

Nickel

Time
100 200 300 400 500

Metals for Test STEN 901853 Plain (met)

FIGURE 96.—Cr, Co, Ni erosion.

failure event data and rank among the best
to date for such complex spectral data.

What is required for the determination of
mass loss is the inverse of the spectral
model. Given a spectrum, predict combus-
tion temperature and element concentrations
(i.e., number density and broadening
parameter). The fourth module listed above,
optimization-fitting routine, was first used
as part of the EDIFIS for the engine 0523
failure investigation. These nonlinear fitting
routines on approximately 15 variables
using spectral radiation models for
10 atomic species for a total of some

1,500 atomic lines required around 1 hr on
an MIPS 8,000 per 0.5 sec of test data,
before the fitting converged to approxi-
mately 5 percent RMS error. Note the
overlay of theoretical versus actual test data
in figure 97. While the results are indeed
impressive, the computational time
requirements have to be addressed for in-
flight/real-time systems.

The third module, neural networks, can
solve the inverse problem to the spectral
model by “learning” how it works. Initially,
only minimal accuracy of the neural
networks may be required, at which point

the optimization/fitting algorithms would
complete the predictions. As the EDIFIS
work continues, however, neural networks
may provide the ultimate solution for in-
flight “real-time” applications. The
University of Alabama at Tuscaloosa has
developed a preliminary set of radial basis
function (RBF) networks—one network for
each element of interest. This set recently
evaluated the entire engine 0523 failure test
(which lasted around 553 sec) for seven
elements in approximately 2.6 min.
Temperature, number density and broaden-
ing parameter predictions are plotted for
three elements, Cr, Ni and Co, respectively,
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in figure 98. Note from column two of
figure 98, when compared to figure 96, how
well the neural nets recognize the major
events for each of these elements. Improve-
ments in speed and accuracy of the neural
networks through the use of better training
data can be realized, and such efforts are
underway.

Integration of the modules to provide a
response time equal to sampling time is a
primary goal for the OPAD–EDIFIS
system. An investigation is underway by
the University of Alabama in Huntsville,
Department of Electrical and Computer
Engineering, to look at processing improve-
ments through computer architecture and
conversion of various software codes into
a form which is easily parallelizable.
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FIGURE 97.—Optimization/fitting results for 130-sec event.
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FIGURE 98.—Temperature, number density and broadening parameter neural net results for Cr, Ni, Co.


